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The power spectrum of the variable z in the Lorenz equations with o = 10, 
b = 8/3,  and r = 200 appeared in previous work to contain a line superposed on 
a continuum. Analysis of an extended solution into consecutive segments with 
rather Similar initial states, each segment spanning at least seven maxima of z, 
shows that the apparent  line is actually a narrow band. Solutions spanning at 
least 14000 maxima of z wouId be needed to resolve the band by standard 
computat ion procedures. Multiplication of the right side of each equation by the 
same function can convert the band to a line, while leaving the points of the 
attractor unchanged.  It is proposed that the spectrum of a completely coupled 
autonomous  flow is, in a certain sense, unlikely to contain a superposition of 
lines and a continuum. 

KEY WORDS: Dynamical systems; chaos; power-spectrum analysis. 

1. INTRODUCTION 

One feature which distinguishes a chaotic autonomous flow or mapping 
from a periodic one is the nature of the power spectrum. A purely chaotic 
system, where almost every solution is uncorrelated with any sine curve, 
possesses a continuous spectral density function. A purely periodic system, 
where almost every solution is the sum of a finite or countable number  of 
sine curves, possesses a set of spectral lines. 

A mapping may also possess a mixed spectrum, where lines and a 
continuum are superposed; the lines may be treated as delta functions. 
Examples are the quadratic mapping 
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2 Lorenz 

where, for a = 1.5, x n alternates between high and low values, and the 
H6non mapping, (l~ 

x , +  1 = x 2 - a - b x n _  1 (2) 

which, for a = 1.65 and b = -0 .1 ,  exhibits similar behavior. For either 
system the subsequences with only even or only odd indices appear to be 
purely chaotic. More generally an attractor may contain several disjoint 
regions, and the successive points of a solution may occupy these regions in 
a fixed cyclic order. We have called such a mapping s e m i p e r i o d i c .  

For a flow, the mapping defined by the states at successive occurrences 
of some key event may be semiperiodic. An example is the succession of 
local maxima Z n of z in the Lorenz equations 

k =  - o x  + o y  

j ,  = - x z  + r x  - y (3) 
2 = x y - b z  

the dots denoting differentiation with respect to time t, where, for o = 10, 
b = 8/3,  and r = 205, Z n alternates between high and low values, (2) and 
behaves much like xn in Eq. (1) or (2). Semiperiodicity in such a mapping 
does not assure us of lines in the spectrum of the original flow, since the 
key events may occur at irregularly spaced times. 

An autonomous flow may possess a mixed spectrum if the variables 
are not completely coupled. If the time derivatives of a subset of the 
variables do not contain the remaining variables, the subset by itself defines 
a flow, which may vary periodically. The remaining variables by themselves 
then effectively define a periodically forced flow, which may exhibit chaotic 
behavior superposed upon forced periodic behavior. An example is the 
system 

1~ = W - -  0 2 X  - -  W 3 - -  W X  2 

2 = ~ow + x - w 2 x  - x 3 
(4) 

2 =  y w - -  6 y  + z - -  z 3  

2 = y  

where, in almost all solutions, w and x approach cos o~t and sin ~0t asymp- 
totically. When transient effects have disappeared, the system reduces to 

2 + 62 - z + z 3 = ~, cos ~0t (5) 

which is a form of Duffing's equation, and which, for 6 = 0.06, y = 0.57, 
and 0J = 1.19, behaves chaotically. (3"4) In Eqs. (4) and more generally, the 
partial decoupling may easily be disguised by a transformation of the 
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dependent variables. Whether or not a completely coupled autonomous 
flow may possess a mixed spectrum is less obvious. 

A common procedure for estimating the spectral density function F(w) 
of a variable z(t) consists of obtaining a number of samples of z(t), 
computing their cosine and sine transforms g(~0) and h(w), and then 
averaging g2(~) + hZ(w) over the samples. An acceptable definition, which 
the procedure attempts to approximate, is 

F(~)  = lim 1 O+~eS~tz(t)dt (6) 

where the pointed brackets denote an expected value or ensemble average. 
A range of values of ~ where F is exceptionally large constitutes a spectral 
band. For a true spectral line, where the oscillations of z(t) remain 
permanently correlated with those of cos~0t or sin~0t, the expected magni- 
tude of the integral in Eq. (6) will increase as ~- instead of ~.1/2, and the limit 
in Eq. (6) will not be finite. 

Although power-spectrum analysis has long been a standard procedure 
in the study of natural chaotic processes, its application to simple 
differential-equation systems such as Eqs. (3)-(5) has been more limited. 
Holmes (3~ and Ueda (5) have studied spectra of Eq. (5), and Holmes has 
compared them with spectra of Eqs. (3). Farmer et al. (6) have compared 
spectra of Eqs. (3) with those of the R6ssler equations, (7~ and have noted a 
much stronger tendency for apparent lines in the latter. They have also 
presented arguments suggesting that these apparent lines are really very 
narrow bands. Farmer (8) has studied the parameter dependence of the 
spectrum near the culmination of a period-doubling bifurcation sequence. 

Recently we found that the spectrum of the variable z in Eqs. (3), for 
o = 10, b = 8/3,  and r = 200, appeared to contain a single line together 
with a continuum, while, for r = 205, the continuum was accompanied by 
three lines. Our findings were based on a set of numerical solutions each 
spanning 344 maxima of z. When these solutions yielded no evidence that 
the apparent lines were really bands, we generated one solution, for 
r = 205, spanning 11 008 maxima of z, and found that these maxima were 
never more than 120 degrees out of phase with the maxima of an optimally 
chosen sine curve. We concluded that if the apparent lines were really 
bands, a much more extended solution would be needed to reveal the fact. 

The specific purpose of this paper is to demonstrate, without actually 
obtaining a more extended solution, that for r = 200 the apparent line is 
indeed a band, and to estimate its width and the amount of computation 
which would be needed to resolve it by standard procedures. A more 
general purpose is to indicate that spectra of chaotic flows often possess 
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extremely narrow bands,  and to examine the likelihood that a completely 
coupled au tonomous  chaotic flow will possess a true spectral line. 

2. C O M P U T A T I O N  

Most  of our comput ing  time has been spent in generating numerical  
solutions of Eqs. (3), on which our subsequent conclusions are based. To 
solve the equations we choose a time increment 6t and, at the beginning of 
each time step, find the first four derivatives of each variable; this is 
especially simple because the nonlinearities are quadratic.  We advance 
through each time step by evaluating t runcated Taylor  series in 6t. To find 
values within time steps we replace 6t by a fraction of St. 

For  o = 10, b = 8 /3 ,  and r---200,  we tentatively choose 6t = 0.01. 
Figs. 1 and  2 show the typical behavior  of the system, as indicated by a 
particular solution. Figure 1 shows the simultaneous behavior  of the three 
variables. Evidently z possesses unequivocally identifiable local maxima 
and minima, but  neither their strengths nor  their spacings are uniform. 
Extrema of x alternate in sign and occur  just before maxima of z, while 
minor  and then major  extrema of y precede extrema of x. There is no 
indication of superposed higher frequencies. 

In  Fig. 2 the upper  curve shows the value Z,  of successive maxima of 
z, occurring at times t, [or t(n)], while the middle curve sh'ows the lengths 
zXt, = t, - t n_ 1 of the time intervals between maxima.  The values of t~ show 
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Variations of z (upper curve), y (middle curve), and x (lower curve) in numerical 
solution of Eqs. (3), with o = 10, b = 8/3, r = 200, and 6t = 0.01. 
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Fig. 2. Successive maxima Z ,  of z (upper), time intervals t, between maxima of z (middle), 
and successive changes AZ~ in Z n (lower), in same numerical solution as in Fig. 1. 

considerable variation about  their long-term average d, about 0.2592. The 
lower curve shows the successive changes AZ n = Z n - Z n _ 1 in the strengths 
of the maxima. The middle and lower curves prove to be nearly indistin- 
guishable. 

If 2xt n and AZ, were perfectly correlated, the spectrum of z would 
possess a true line at ~ = 2 v / d ,  since t, would never completely lose phase 
with t o +nd .  Actually the correlation is imperfect, but it is so high that the 
phase loss cannot  grow rapidly. To determine whether it grows at all we 
follow another approach.  

A feature of the attractor A of Eqs. (3) which is common to that of 
many  chaotic flows is the presence of an infinite number  of unstable 
periodic orbits Q1, Q2 . . . .  in A. An arbitrary point P in A moving along 
its orbit will, on an infinite number  of separate occasions, pass arbitrarily 
close to any periodic orbit Qj; the closer a given approach, the longer the 
time before P recedes from Qj. It follows that the oscillations of any 
variable must eventually lose any temporary agreement with those of any 
pure sine curve, unless the period of the sine curve is a divisor of the period 
27r/o:j of Qj. Thus we cannot expect F(w) to have any true lines except at 
multiples of ~0ji and, unless ~0j, ~% . . . .  have a common multiple, we cannot 
expect any lines at all. 

A solution which is periodic in x, y, and z must also be periodic in Zn. 
We shall call the number  M of maxima of z before z repeats its behavior 
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the order  of the solution, and call the solution an M-loop solution. We shall 
call time A T required for z to repeat its behavior the per iod ,  and the ratio 
A T / M  the subper iod ,  even though x and y will have reversed their signs if 
M is odd. 

Figure 2 suggests that l-loop and 7-loop solutions may exist with 
initial conditions close to the conditions at tla and t26. Such solutions are 
readily found by successive approximation. The computed subperiods are 
respectively 0.258394 and 0.260104. 

These values, although unequal, are so close that we must consider the 
possibility that their difference is an artifact of the numerical procedure. 
Accordingly, we have redetermined the subperiods, using shorter time 
steps. With 8t =0.005 the subperiods are 0.258351 and 0.260013; with 
8t = 0.001 they are 0.258349 and 0.260009. We conclude that the sub- 
periods are definitely unequal, and that the periods cannot have a common 
divisor close to either subperiod. There is therefore no spectral line near ~o 0. 
Use of the longer time step 8t  = 0.01 hardly alters the subperiods, but it 
changes their difference noticeably, and in the remaining computations we 
have let 8t = 0.005. 

Returning to Fig. 2, we note that Z n tends to alternate between higher 
and lower values, but occasionally increases or decreases twice in a row, so 
that the phase of the alternations is reversed. These reversals occur shortly 
after exceptionally high values of Zn, which occur immediately after 
exceptionally low values. We shall denote the times t (no) ,  t ( n l ) , . . ,  of these 
low values by T 0, T I . . . . .  and call the segment of the solution of length 
D k = T k - T k_  i =  t ( n ~ ) -  t ( n  k_  l) extending from T k_  1 to T k a revers ing 

s e g m e n t  of order  m k = n k - n k_  1, or an mk-loo p segment. We shall call the 
ratio d k = D k / m  k the sub l eng th .  In Fig. 2 the times T O = t13, T 1 = t26 , and 
T 2 = t33 are indicated by arrows; T o and T 1 are the initial points of a 
13-loop segment of sublength 0.25898 and a 7-loop segment of sublength 
0.26012. No reversals follow the rather low maxima at t 2 and t47. 

In Fig. 3 the upper curve shows successive values of m k, plotted 
logarithmically, occurring in a new solution with 8t  = 0.005. Evidently 
3-loop and 5-loop segments never occur, while about 20% of the segments 
are of order 7. The lower curve shows the corresponding values of d k. The 
total range of d k is remarkably small, in view of the large range of Ate. No 
sublengths are as short as the l-loop subperiod (the bot tom line in Fig. 3), 
while n o n e  are much longer than the 7-loop subperiod. In addition, d k and 
log m k have a high negative correlation. Examination reveals that this 
correlation is due largely, but not entirely, to the values of d k when m k = 7; 
these are all close to the 7-loop subperiod and are  completely separated 
from the remaining values of d k . 

Extension of the solution to 338 segments containing 6764 maxima 
indicates no systematic arrangement of the successive values of m k .  Like- 
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Fig. 3. Orders  m k of successive reversing segment s  (upper),  and  subper iods  d,, of reversing 
segments  (lower), in numer ica l  solut ion of Eqs. (3) with o = 10, b = 8 /3 ,  r = 200, and  
8t  = 0.005. 

wise the values of D k - mkd,  which represent the successive shifts in phase 
difference between z ( t )  and a sine curve of optimally chosen period 
d = 0.259226, show a serial correlation of only -0 .06  at one lag. Thus the 
length and order of one segment appear to tell us very little about the 
lengths and orders of the following segments. 

In summary, z ( t )  may be expressed as a succession of intervals of 
length At n having a mean d =  0.2592 and a range of 0.2396, and the 
consecutive values of d n will have a high negative correlation. Alternatively, 
z ( t )  may be expressed as a succession of segments of length D k and order 
m~, where m k has a mean m = 20.0, while D k has a mean D = m d  = 5.184 
and D k - m k d  has a standard deviation e = 0.0055, and successive values of 
D k - m k d  will occur in essentially random order. The latter formulation 
will allow us to estimate the width of the spectral band at ~0 = 2 ~ / d .  

With z ( t )  analyzed into segments, Eq. (6) becomes 

F ( ~ ) =  lim 1 e i~ ' z ( t )d t  (7) 

We note first that between T k_ i and T k there is very little phase shift of the 
maxima of z ( t )  relative to those of cos~t, provided that ~ is close to ~0. 
The values of the separate integrals in (7) thus depend mainly upon the 
lengths T k - T k_ 1 and the accumulated phase shift up to time T k ~ or T k. 
We therefore let 

;r[~ e i '~  = Ckmk ei~T~ (8) 
- I  

and assume that the relative variations of c k are small compared to those of 
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coscoT k or sin~oT k, and may be neglected. Thus 

C2 K 
F ( ~ ) =  lim ~ (mjmk ei~rk-r~)) (9) 

K--,~ TK--- To j,k=l 

We now assume that the width of the band would not be greatly 
altered if all segments possessed the same order m = 20, with the standard 
deviation of D k still equal to e = 0.0055. Assuming that successive values of 
D k are independent, so that the variance of T k - T j  is [ k - j t c  2, and 
approximating the distribution of D k by a Gaussian distribution (actually it 
is skewed), we find that 

F(co) = cZm 2 ~ eiJ~~ -('/2)j~2'2 (10) 
j =  - ~  

Letting ~o = w 0 + a, where a/o~ is small, and noting that both the positive 
and negative terms in Eq. (10) form geometric series, we obtain 

F(~oo+ eO=c2m2sinh(�89189 (11) 

Since we is small, we find, for aD small, that 

F(~o o + ~)/F(coo) = ~41~4/(r163 "Jr- 4oL2D 2) (12) 

Thus, for example, if F(~00+ a) is to be one half as large as F(w0), 
= 2 ,  o r  = 

With the appropriate numerical values, ~/~00 = 7.1 • 10 -5, or about 
1/14 000. This means that if the expected spectrum, computed by standard 
procedures, is to show a peak value at one point with values half as large at 
the two adjacent points, the three points must be points 13999, 14000, and 
14 001, and the solutions whose Fourier transforms are evaluated must span 
14000 maxima of z, or 700 segments. Higher resolution would require 
longer solutions, and, in any event, several solutions are needed for a 
representative average. The required computations would exceed that of the 
present study by at least an order of magnitude. 

3. DISCUSSION 

Our procedure may appear somewhat haphazard. We have taken it for 
granted that reversing segments may be unequivocally defined. Without 
invoking full mathematical rigor we can place our conclusions on a sounder 
basis. 

Figure 4 is a plot of 1000 consecutive maxima Z n of z against the 
immediately preceding maxima Zn_ 1. The points appear to fall on a 
principal curve covering the full range of Z n, and a shorter auxiliary curve 
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Fig. 4. Values of maxima Z~ of z versus values of previous maxima Z n_ i, in same numerical 
solution as in Fig. 3. Numbers 0, 1 . . . .  opposite hatch marks or at ends of curves indicate 
points P~, P~ . . . .  referred to in text. Numbers 0 L, O R, 1, . . .  opposite large dots refer to 
points POL, POR, PJ . . . . .  Diagonal line L is line Z~ = Z,, 1. 

merging with it at the upper  left. Points on the auxiliary curve follow points 
to the right of the rounded  minimum, so that each point  (Zn_~,Z~) 
determines (Z~,Zn+l) unambiguously.  The diagonal line L, where Z n 
= Z ,_  ~, intersects the principal curve at the fixed point, which corresponds 
to the l - loop solution. Points above or below L correspond to increases or 
decreases in Z. 

If  point  P~ with coordinates (Z*_ l ,Z~)  is at the rounded  minimum, 
point  P~ with coordinates (Z3,Z'() is at the extreme upper  left. The 
succeeding points P~' and P~' then are at the right end of the principal curve 
and the lower end of the auxiliary curve, and both lie below L, so that a 
reversing segment begins at Z~. Points Pg to P~' lie on alternate sides of L, 
and P~' and P~' straddle P~. 

If P6 with coordinates (Z'_ 1, Z~) coincides with point  P0L or P0R lying 
somewhat  to the left or right of P~', points P~, P~, and P~ will lie, 
respectively, below P~, to the left of P~, and  above P~'. If PoL or P0R is 
suitably chosen, P,[, and hence P~ . . . .  will fall on the fixed point. 
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If P0 lies between POL and PoR, P1 will lie between P~' and P~, etc. 
Thus, if P0 is suitably chosen, either to the left or right of P~', P7 will 
coincide with P0. There are therefore two 7-loop solutions, one with 
Z 0 < Z~ and one with Z 0 > Z~'. The solution whose subperiod we previ- 
ously determined was the former�9 Estimates of the subperiod of the latter, 
with 8t = 0.01, 0.005, and 0.001, are 0.260051, 0.259965, and 0.259961. 

It is evident that two successive points Pn, Pn+~ cannot lie on the same 
side of L unless Pn lies between P~" and P~ and above L, or P,+l lies 
between P~' and P~, and below L. In these c a s e s  Pn-2, or P,,-I, lies 
between P0L and Port, while Pn+l and P,+3, or P~+2 and P~+4, lie to the 
left of POL" There can therefore be no 3-loop or 5-loop segments. 

We can examine the correlation between At, and AZn in similar detail. 
Figure 5 shows 1000 consecutive values of At, plotted against the corre- 
sponding values of AZ,. Here also the points appear to be confined to a 
principal curve and an auxiliary curve, and the correlation, although high, 
is clearly imperfect. If we rotate Fig. 4 counterclockwise through 225 ~ the 
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new abscissa is AZn, while L becomes the vertical line Zn = 0, after which 
the figure may easily be distorted into Fig. 5. 

The mapping from (Z~_I,Z~) to (Zn,Z~+ 0 in Fig. 4 is actually a 
Poincar6 mapping. Ordinarily in such a mapping, the values of two 
variables, say, x and y, at some key time, say when z crosses the surface 
z = z* toward lower Values, determine the values x', f ,  of x and y at the 
following crossing. Here we have replaced the plane by the hyperboloid 
z = xy/b,  and x and y by two functions of x and y, namely, xy/b and 
x'(x, y)y'(x, y)/b.  The curves in Fig. 4 form the attractor of this mapping. 

Just as points with equal ordinates on the two sides of P~ are followed 
by points with equal abscissas on the principal and auxiliary curves, so we 
would expect points on these curves with equal ordinates to be followed by 
points with equal abscissas and distinct ordinates, and hence on separate 
curves. Such curves may in fact be observed by redrawing Fig. 4 with 
sufficient magnification; a second auxiliary curve lies above the principal 
curve and terminates at P~. Continuing with this reasoning, we conclude 
that the attractor should consist locally of a Cantor set of curves. Globally 
some of these curves are joined; the apparent ends at P~, P2 . . . .  are not 
ends nor even cusps, but are points of extremely large curvature. 

The mapping closely resembles the H6non mapping of Eq. (2), with a 
small negative b (a positive b would place the auxiliary curve to the right of 
the principal curve). We can illustrate the Cantor-set structure of the 
attractor schematically by displaying the actual H6non attractor for a 
larger negative b, choosing a so that there are periodic solutions of order 7 
but not order 5. Figure 6 shows 4000 points on the Hdnon attractor for 
a = 2.238 and b - -  -0 .4 .  Two additional auxiliary curves, appearing to 
terminate at P~' and P ] ,  are resolved. Points P~ and P~ lie on these curves; 
P~,P4. . .  lie on curves which are still not distinguishable as separate 
curves, and appear as a single principal curve. Our conclusions concerning 
the impossibility of 3-loop and 5-loop segments are unchanged. 

By analogy with Fig. 4, we should expect Fig. 5 to contain a Cantor set 
of curves. Evidently it does; with sufficient magnification the principal 
curve in Fig. 5 appears to be two curves. 

We have noted ~2) that for r > 203.4 there are no periodic solutions of 
odd order > 1. By analogy with Eqs. (1) and (2) we should expect some 
intermediate values of r where one 7-loop solution is stable. We find such 
values extending from 200.65 to 200.67. Here the attractor reduces to 7 
points, and the spectrum contains lines and no continuum. 

For slightly higher values of r, 7-loop segments no longer occur, and 
the shortest segments are of order 9. The differences between the various 
sublengths are presumably smaller, and the spectral band at r is corre- 
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Fig. 6. Values of x~ versus values of x~_ ~ in H~non mapping of Eqs. (2), for a = 2.238 and 
b = -0.4. Numbers opposite hatch marks, at ends of curves, or opposite large dots have same 
meaning as in Fig. 4. Line L is line x n = x n_ I. 

spondingly narrower.  For  r = 205 the reversing segments would have to be 

defined in terms of phase reversals in the sequence Z0, Za ,Z4,  . . . ,  and  
the spectral bands  could be exceedingly narrow. 

4. C O N C L U D I N G  REMARKS 

We have examined the power spectrum of one variable z in a dynami-  
cal system, which in an earlier study appeared to consist of a c on t i nuum 
and  a line. We have determined that the apparen t  line is actually a band.  
Our  most remarkable  f inding is the extreme narrowness  of the band,  

compared to bands  in the spectra of m a n y  natura l  chaotic phenomena ,  

such as the sunspot  cycle; this was no t  suggested to us by the m a n y  
intensively investigated features of Eqs. (3) such as homocl inic  explo- 
sions. (9) Solutions spann ing  more than 10000 max ima  of z would be 
needed to establish by direct computa t ion  that the b a n d  is not  a line. 

We have derived a Poincar6 mapp ing  which expresses each m a x i m u m  
of z as a funct ion  of the previous two maxima.  The H6non  mapp ing  with a 
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small negative b serves as a convenient inexpensive approximation to the 
Poincar6 mapping. What the H6non mapping and the Poincar6 mapping 
do not reveal is the time intervals between successive maxima of z. This 
becomes evident when we note that if the right-hand side of each equation 
is multiplied by the same differentiable scalar function f ( x , y , z ) ,  with 
positive upper and lower bounds, the Poincar6 mapping, and in fact the 
points of the attractor A, will be left unaltered. At the same time, the time 
intervals 2~Z, between maxima of z, and the frequency with which different 
parts of A are visited, may be changed. It follows that the power spectrum 
may be changed. 

Multiplication by f effectively replaces t by a new independent vari- 
able 0 where dr~dO = f .  For Eqs. (3), a suitable choice o f f  can replace the 
spectral band by a line. If, for example, 

tan0 = (x),  - b z ) / ( % z *  - aOoZ ) (13) 

where z* is a value, say, r - 1, which z invariably crosses between succes- 
sive extrema, 

f=[w2o(z *- z)'+ 2']l[OJo(Z* - z)~ + 0%2'] (14) 

Numerical integration indicates that the denominator in Eq. (14) will never 
vanish in A, whence the maxima and minima of z will occur when 0 is a 
multiple of ~r, while z = z* at odd multiples of %/2. Thus there will be a 
spectral line at period 2~r. 

In equalizing the intervals between maxima we have also partially 
decoupled the variables. Equation (13) implies that 

z = ( x y  cos 0 - % z ' s i n  0 ) / ( b  cos 0 - %sin 0 ) (15) 

when this value is substituted, the new system reduces to a periodically 
forced system in x and y. 

The original intervals between maxima vary considerably, so that f, as 
given by Eq. (14), must vary likewise. By contrast, the sublengths of the 
reversing segments vary only slightly. We wonder whether a function f of 
comparably slight variation can equalize the sublengths, without equalizing 
the individual intervals. We wonder also whether, in this event, the vari- 
ables will become partially decoupled. 

In summary, the spectral properties of a chaotic flow need not be the 
same as those of a Poincar6 mapping derived from it. A superposed line in 
either spectrum does not imply such a line in the other spectrum. For some 
completely chaotic systems, including Eqs. (3), a simple transformation of 
the independent variable can produce a spectral line. 

Mappings with mixed spectra are common; they occur, for example, 
just beyond the culmination of every period-doubling bifurcation se- 
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quence.(~0,2~ By contrast, autonomous flows with mixed spectra appear, in 
a certain sense, to be exceptional. Just as a multiplicative function may 
sometimes equalize the time intervals between key events, so one may 
sometimes render them unequal. Some function can convert the partially 
decoupled Eqs. (4), for example, into a completely coupled system, with no 
spectral line. Among all possible choices of positively bounded differentia- 
ble functions, those which will equalize a chosen set of intervals are, in a 
certain sense, much rarer than those which will make them unequal. 
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